
HeRVé: A Pipelined RISC-V CPU with Privileges
Extensions in a Formal HDL

Gabriel Desfrene

August 2024

Abstract

Ensuring the correctness of hardware components is vital, as highlighted by historical issues
like the Pentium FDIV bug. This incident spurred the adoption of formal methods for hardware
verification, a practice that remains crucial today. The development of proof assistants has made
it possible to reason rigorously about hardware components. Building on this, Thomas Bourgeat
and Clément Pit-Claudel formalized the core concepts of the Bluespec language in the Coq proof
assistant, leading to the creation of Kôika. This report details the development of a pipelined
RISC-V CPU with interrupt management using the Kôika framework. The work aims to provide
a more complex model for formal verification methods of hardware designs, especially for the
framework developed by Pierre Wilke and Matthieu Baty.

1 Introduction
Ensuring the accuracy of hardware components is of paramount importance. The discovery of the
Pentium FDIV bug, which caused significant errors in floating-point division calculations, prompted
chip manufacturers to increasingly adopt formal methods to enhance the reliability of specific aspects
of their design. While these techniques are still used today, as evidenced by the formal verification
of security mechanisms in Arm’s Morello architecture at the ISA level, it is important to note that
only a fraction of the behaviors in modern designs are subject to formal verification.

The development of proof assistants has significantly facilitated reasoning about complex objects,
such as hardware designs. These tools enable the formal verification of complex behaviors, reinforc-
ing confidence in the reliability and correctness of hardware components, which was previously
unattainable. With this aim in mind, Thomas Bourgeat and Clément Pit-Claudel decided to
formalize the core concepts of the Bluespec language [1], a hardware description language (HDL).
This formalization, conducted in the Coq proof assistant [2], led to the development of a verified
compiler for this language subset, called Kôika. This compiler targets Verilog, thereby enabling the
synthesis of Kôika hardware designs. A pipelined RISC-V mini-processor serves as an example of
Kôika’s application.

Using these tools, Pierre Wilke and Matthieu Baty developed a framework for conducting formal
proofs on Kôika designs [3]. They successfully demonstrated the correctness of a security mechanism
on the RISC-V mini-processor.

Building on the mini-processor example, I developed a pipelined RISC-V CPU with interrupt
management in Kôika, following the RISC-V specification [4]. This development now enables formal
proofs of CPU correctness and the verification of security mechanisms over a more sophisticated
model. Although this CPU currently lacks additional privilege mechanisms such as execution levels
and a memory mapping controller, which are necessary for running a fully-fledged operating system,
it is designed with these features in mind for easy future integration.

1



2 The Kôika HDL

2.1 A Concurrent HDL
A pipelined CPU is inherently a concurrent system. For instance, in a classic fetch-execute pipeline,
each of the stages will perform computation in the same cycle. As the fetch stage is looking for the
instruction at pc, the exec stage will actually perform the computation of the previously fetched
instruction. Because the different stages are handled simultaneously, this design allows for quicker
execution of a set of instructions.

Kôika is a rule-based HDL, it describes the operation performed by hardware components at a
high level of abstraction. Rules are atomic operations that will execute concurrently during a cycle.
Rule-based HDL provide a simple concurrency model which can be leveraged for describing pipelined
systems. Kôika programs are written using an embedded language inside the Coq proof assistant.
This provides a way to manipulate such programs formally. The Kôika framework is available on
GitHub [5].

2.2 Rule-based HDL
The semantics of Kôika is thoroughly exposed in [1]. Only a part of these semantics is required
to understand the designs choices that I have made developing the pipelined RISC-V CPU. This
presentation is inspired from the previous paper, but it will gloss over some details. Please refer to
the article of Thomas Bourgeat et al. for these details.

A Kôika program is composed of rules, witch represent an atomic unit of computation. At each
clock cycle, all rules defined in the schedule are executed concurrently. To perform computation, the
rules manipulate values stored in registers. Typically, each rule reads some values from a set of input
registers, performs some combinational (i.e. pure) computations, then writes results to a set of output
registers. Kôika contains standard combinational operations such as:

• Binary operations over buses: addition, equality, signed and unsigned comparisons, etc.

• Multiplexing: conditional or C++ “switch”-like statement.

• Bus manipulation: bits extraction, concatenations, etc.

1 rule tick =
2 let count = read(clock) in
3 write(clock , count + 1)

Figure 1: A very simple Kôika rule, counting the number of cycles in clock.

Figure 1 exposes a very simple Kôika rule, which counts the number of cycles in a register
named clock. This example reads the register clock and writes the incremented value to the same
register. The semantics of reads and writes are not as straightforward as it may seem. Due to the
decomposition of Kôika programs as a list of concurrent rules, reads return the value of the register
at the beginning of the cycle, and all writes performed during a rule are committed at the end of the
cycle. So, in out little example in figure 1, the incremented value of register clock is only visible at
the beginning of the next cycle.

2.3 Resolving rule conflicts
When a rule tries to write two times on the same register, it fails. The code in figure 2 illustrates

this possibility when registers x and y are both 0. When a rule fails, no changes are committed to the

2



1 rule may_fail =
2 if read(x) == 0 then write(z, 1);
3 if read(y) == 0 then write(z, 2)

Figure 2: A simple Kôika rule that can write multiples times on the same register.

written registers in this rule at the end of the cycle. The same issue can occur when two different
rules try to write to the same register. Figure 3 demonstrates this issue. At best, the result of only
one rule can be committed to the registers. We use the order given by the schedule to determine
which one should have its results taken into account.

1 rule rule1 =
2 if read(x) == 0 then write(z, 1)
3
4 rule rule2 =
5 if read(y) == 0 then write(z, 2)
6
7 schedule prog = [rule1; rule2]

Figure 3: A Kôika program with two rules that can write to the same register.

The Kôika compiler ensures that all the rules are executed in parallel. It generates circuits to
resolve conflicts when necessary. This circuitry ensures that if a conflict has occurred, the resulting
state will be the same as if the rules were executed one after the other, according to the schedule
list. In the program of figure 3, when registers x and y are 0 at the beginning of a cycle, only rule1
is committed, and the value 1 is written to the register z at the cycle’s end. The keyword fail is
present in the Kôika language to force a rule to fail.

2.4 Refining write and read

In the previous description of the Kôika language, results of the computation done by a rule, can only
be used by another rule at the next cycle. This is due to the semantics of write operations, which are
only committed at the end of a cycle. This can hurt performance of Kôika hardware designs, when
the results of a rule could be used immediately by another one.

To address this issue, the Kôika language, introduces ports for each read or write operation.
Only two ports are possible: 0 and 1. Previous descriptions of read and write operations are those
on port 0. Operations on port 1 have the following effects:

• read1 can read the value written by a write0. If no write0 has occurred, it is equivalent to a
read0.

• write1 will overwrite any value previously written by a write0. A write0 occurring after a
write1 on the same register will fail.

The Kôika program presented in figure 4, illustrates the use of ports. Indeed, in some cases, two
cycles of computation can be proceeded in one:

• If the value in r is even but not a multiple of 4, both rules are executed. The circuit will write
3× (r/2) + 1 in r.

• If the value in r is a multiple of 4, only the divide rule writes data to r. The circuit writes r/2
in r.

3



• If the value in r is odd, only the multiply rule writes data to r. The circuit writes 3× r + 1
in r.

1 rule divide =
2 let v = read0(r) in
3 if v[0] == 0 then (* v is even *)
4 write0(r, v >> 1) (* r := v / 2 *)
5
6 rule multiply =
7 let v = read1(r) in
8 if v[0] == 1 then (* v is odd *)
9 write1(r, (v << 1) + v + 1) (* r := 3 * v + 1 *)
10
11 schedule collatz = [divide; multiply]

Figure 4: This simple Kôika program computes the terms of the Collatz sequence in the register r.

In the next section, I will discuss which privileges extensions have been developed in my pipelined
RISC-V CPU, and what designs choices I have made to implement this in Kôika.

3 Rewriting the CPU

3.1 Kôika’s CPU example
The CPU provided as an example in Kôika’s sources, is a pipelined implementation of the RV32I
ISA, as described in the RISC-V Unprivileged Specification [6]. It operates through four primary
stages: Fetch, Decode, Execute, andWriteBack. The last one is responsible for writing the results of
the Execute stage to the corresponding destination register.

IMem Halt
halt

Execute
epoch, sstack

Fetch
pc

rf, scoreboard Decode WriteBack

WaitIMem Tick
cycle_count DMem

pc,
ppc

epoch pc
,

pp
c

ep
oc

h

Me
mR

eq

MemResp

pc
,

pp
c,

ep
oc

h

dI
ns

t,
rv

al
1,

rv
al

2

MemReq

Me
mR

es
p

newrd,
size,

offset

isUnsigned,
dInst

Figure 5: Pipeline of the Kôika’s example RISC-V processor.

Figure 5 depicts the detailed pipeline of this processor. Each stage, represented as a node in the
diagram, is described as a Kôika rule. This ensures that all the stages of the pipeline will execute

4



in parallel if possible. Edges are FIFO structures that link rules. Data entering a FIFO at one cycle,
is available at the FIFO’s end at the beginning of the next cycle. Blue variables such as epoch or
scoreboard are internal or global registers.

This CPU does not have any error checking (unaligned pc, unaligned memory access, etc.), and
because no privilege extensions are implemented, neither does it implement error handling. With
the work of Matthieu Baty et al., a shadow stack checks for buffer-overflow attacks. When triggered,
this shadow stack halts the CPU, and no other instruction is processed.

Although it can perform calculations, this CPU cannot be used by an operating system. From
this example, my work aims to implement a real pipelined processor with error management and
signaling. To do so, I followed the RISC-V Privileged Specification [4].

3.2 Control and Status Registers (CSR)
Control and Status Registers (CSRs) are registers introduced in the RISC-V specification that allow
the processor flow to be controlled and modified. I decided to implement all the general CSRs that
describe the processor capabilities and state, and all the CSRs used for the management of interrupts
and synchronous exceptions (errors). Table 1 lists all implemented registers.

Around 450 lines of specification where necessary to describe the circuits needed to read and
update these registers. This specification is flexible, and is made for easy addition of new CSRs. The
two extensions Zicsr and Zicntr of the RV32I Unprivileged ISA [6] have also been implemented in
the pipelined CPU to perform changes on the CSRs. These extensions introduce six instructions to
modify all the implemented CSRs:

• csrrw reads the original value of a CSR and writes the value of a register to it.

• csrrs reads the original value of a CSR and sets bits to it based on a mask in a register.

• csrrc reads the original value of a CSR and clears bits to it based on a mask and set bits to it
based on a mask.

• csrrwi, csrrsi, csrrci: They are equivalent to the preceding instructions, but they use
immediate values instead of a register value.

The code needed to add a non-privileged mode, called User in the RISC-V Specification, is nearly
finished in the HeRVé processor.

3.3 Pipeline modifications
The majority of the development of the HeRVé processor was the conception of its pipeline. With the
same convention as the previous figure, the HeRVé pipeline is shown in figure 6. Multiple changes
were necessary to allow the management of interrupts.

First, checks have been added in the upper stages of the pipeline to detect illegal states, such as
misaligned pc (Fetch stage), or illegal instructions (Decode stage). These checks have leads to the
addition of the failcode field in the links between stages. This field is responsible for transmitting
the errors that have occurred in processing of the instruction it comes with.

Next, a complete rework of the execution stage was mandatory. This rework has been dictated
by a few concepts. First, I wanted the execution of instructions to be modular within the HeRVé CPU.
It should be possible to add complex components operating on multiple stages, such as an FPU1 or a
shift-and-add multiplier in the ALU. Moreover, adding the interrupt management to this processor
should not significantly impact its performance. To ensure maximal clock speeds, I needed to limit
the growth of the critical path of the HeRVé design. This has led to the separation of the execution

1Floating Point Unit.

5



Category Name Address Role

Unprivileged
Counter/-
Timers

cycle 0xC00 Cycle counter for rdcycle instruction.
time 0xC01 Timer for rdtime instruction.

instret 0xC02 Instructions-retired counter for rdinstret instruction.
cycleh 0xC80 Upper 32 bits of cycle.
timeh 0xC81 Upper 32 bits of time.

instreth 0xC82 Upper 32 bits of instret.

Machine
Information
Registers

mvendorid 0xF11 Vendor ID.
marchid 0xF12 Architecture ID.
mimpid 0xF13 Implementation ID.
mhartid 0xF14 Hardware thread ID.

mconfigptr 0xF15 Pointer to a configuration data structure.

Machine
Trap Setup

mstatus 0x300 Machine status register.
misa 0x301 ISA and extensions.
mie 0x304 Machine interrupt-enable register.

mtvec 0x305 Machine trap-handler base address.
mstatush 0x310 Upper 32 bits of mstatus.

Machine
Trap
Handling

mscratch 0x340 Scratch register for machine trap handlers.
mepc 0x341 Machine exception program counter.

mcause 0x342 Machine trap cause.
mtval 0x343 Machine bad address or instruction.
mip 0x344 Machine interrupt pending.

Machine
Counter/-
Timers

mcycle 0xB00 Machine cycle counter.
mtime 0xFC0 Machine timer counter.

minstret 0xB02 Machine instructions-retired counter.
mcycleh 0xB80 Upper 32 bits of mcycle.
mtimeh 0xFE0 Upper 32 bits of mtime.

minstreth 0xB82 Upper 32 bits of minstret.

Timer
Registers

mtimecmp 0xFC1 Value used to generate timer interuptions.
mtimecmph 0xFE1 Upper 32 bits of mtimecmp.

Table 1: List of all implemented CSR in the HeRVé processor.

6



stage into 6 weakly dependent stages: Flow ,WaitExec, ALU , Jump, System and Control . Each of these
stage is dedicated to a unique task in the pipeline:

• The Flow stage ensures that only valid instructions are executed by the pipeline. This is a key
stage of this design, section 3.4 will dive in detail into its role.

• The ALU stage computes the result of arithmetic and logic instructions. It cannot fail in the
RISC-V specification, that’s why no failcode field is returned by this stage.

• The Jump stage is responsible to compute the result of a jump operation2. This role also checks
for buffer-overflow exploits, with the embedded shadow stack. Errors are reported with the
failcode field.

• The System stage computes and performs anymodification to the processor needed by privileged
instructions such as those modifying CSRs or system call instructions. Errors are reported
with the failcode field.

• TheWaitExec stage’s role is to keep the Control synchronized with the previous workers. It
follows received information from the Flow stage to Control.

• The Control stage is the most important stage of this pipeline, it is the conductor of the whole
“execution pipeline”, the 6 stages introduced in the HeRVé processor. Section 3.5 will detail
what it does.

The stages ALU , Jump, System and DMem are called workers. They compute the result of a class
of instruction. This rework of the Execute part of the CPU is very flexible. Indeed, the WaitExec
stage ensures that computation can occur on multiples cycle in workers. Until the Control stage
has consumed the structure provided byWaitExec, it will not accept any further instructions. The
WaitExec stage must wait for its output queue to be emptied, in order to push another structure.

3.4 The Flow rule
The Flow rule marks the beginning of the execution of an instruction. It acts as a barrier, letting
through only the instructions that need to be executed. This stage is responsible for the ordering of
the executed instruction. To do so, it uses two “internal” registers:

• The register nextPC represents the address of the next instruction to be executed. It is updated
accordingly when a jump occurs. On an exception or an interrupt, this register is updated
by the Control stage. All the instructions entering the execution pipeline have their address
checked against this register.

• The register stalled_exec acts as a flag, controlling when this stage should fail. It is used to
prevent more instructions being fed to in the execution pipeline.

Let’s unravel what happens during this stage in the HeRVé CPU:

1. This stage tries to consume a decoded instruction from the Decode stage. If none is present, it
fails. If the stalled_exec flag is set or if an interrupt is pending, it will also fail. This is to
prevent any instructions from entering the execution pipeline. Indeed, when an interrupt is
pending, The execution pipeline must be emptied, to then jump to the handler. This is done by
the Control stage.

2In RISC-V, jump operations produce a value equal to pc + 4.

7



Fetch
pc

IMem WaitIMem

Decode

Flow
nextPC

stalled_exec

rf, scoreboard
remaining_instr

DMem ALU WaitExec Jump
sstack

System
csr

Tick Control Interrupts

WriteBack

pc, ppc
failcode

pc, ppc

failcode

Me
mR

eq

MemResp
failcode

pc
ppc

dInst
failcode

Me
mR

eq

pc
,

dI
ns

t
rv

al
s

pc
dInst
dmem

needJMP

kind
earlyFail
failcode

pc,
dInst

rvals

dInst, rvals

MemResp
failcode

newrd

pc
dInst
dmem

needJMP

kind
earlyFail
failcode

ne
wr

d
fa

il
co

de

newrd, trapRet

failcode

rd_idx
valid_rd

write_reg
newrd

is_mem
dmem
mem_req

Figure 6: Pipeline of the HeRVé processor.

8



2. Data retrieved from the Decode stage must be processed, but it can be invalid. When a jump
occurs in the pipeline, whether caused by an instruction or an interrupt, previous stages (Fetch,
Decode, etc.) have worked with invalid values. Their results must be discarded. This is done
when nextPC is different from the incoming one.

3. Valid incoming data fromDecode is now known correct. If this data refers to an error (unaligned
pc, etc.), it is passed along toWaitExec. The flag stalled_exec is set, the Control stage will
deal with the error and restore the pipeline state. Otherwise, the execution of the decoded
instruction begins:

(a) Because the execution of an instruction occurs over multiple cycle, a mechanism should
ensure that the values of registers used for the computation are correct. This specificity
is represented in figure 7. The result of the second instruction depends on the result of
the former. To prevent issues, values of registers are frozen, and the destination registers
are marked as dirty. This prevents freezing its value. When the result of this instruction
reaches the WriteBack stage, the destination register will be marked as clean.

1 add t0, a0, a1 // t0 := a0 + a1
2 sub a0, a2, t0 // a0 := a2 - t0

Figure 7: Very simple RISC-V program illustrating dependencies between instructions.

(b) Next, according to the instruction class, data is given to its corresponding worker.
(c) At the end of this stage, internal registers are updated. The remaining_instr register

is incremented. This register counts the number of instructions that have entered the
execution pipeline but which have not yet been retired.

The Flow rule is also responsible for blocking instructions being executed when a worker reports
an error. To do so, read andwrite ports are used. Workers report errors by enabling the stalled_exec
flag. Because they are “executed” before in the Kôika schedule they use the port 0. The Flow rule
reads this register on port 1 thus seeing any modification made by the workers. This allows for the
Flow stage to fail in the same cycle that the error is reported by a worker. That’s why, to ensure the
consistency of the execution, workers must absolutely report errors at the cycle they received the
data.

3.5 The Control rule
This stage is the one that supervises the whole pipeline. Only this rule can prepare the processor for
a PC jump. This is why every jump induced by an instruction (jal, jalr, mret, …), an exception
(unaligned PC, invalid instruction, …) or an interrupt (timer tick, …) leads to actions here. This stage
is organized in two main sections:

• Retiring instructions from the execution pipeline and committing their results to the registers.
This occurs in several steps:

– The Control rule checks if it can consume data from the WaitExec stage. If so, it does and
thanks to the information passed along, it tries to retrieve the result of the instruction
from the corresponding worker. If the worker has not yet finished, this rule fails, giving
another cycle for the worker to finish.

– When no error has occured in processing the instruction, it is counted as retired and the
input structure of WriteBack is filled to update the value of the destination register. This
stage will restore the state of the register as clean.

9



– The remaining_instr register is decremented.

– If the instruction results in a jump or in an error, the registers of the pipeline are changed
to perform a change of the instruction address. The PC address is the address of the
trap-handler when an exception occurs, or the one specified by the program on a jump.
The pc register controlling the fetch address is updated. The nextPC variable is updated
to mark the future instruction as valid in Flow . The stalled_exec flag is unset to allow
the future instruction to enter the execution pipeline.

• Performing a jump when an interrupt is fired. According to the previous section, when an
interrupt fires, instructions stop entering the execution pipeline because Flow fails at each
cycle. The execution pipeline will therefore empty over the next few cycles. When the register
remaining_instr equals 0, no instructions are being executed, and it is now safe to set up the
processor state for a jump at the handler. The jump is done is the same way as a traditional one,
a few CSRs are updated to mark entry into a trap. This system avoids jumping immediately
when an instruction disabling interrupts was being executed.

4 Experiments and Synthesis
In this section we address the design performances and raw performances of the HeRVé processor.
The HeRVé processor is described in roughly 6760 lines with the Kôika HDL. To put it in perspective,
the original processor provided as a Kôika example is described in roughly 5860 lines. The processor
code is available at [7] with the used version of Kôika at [8].

Figures 8 and 9 compare the two CPUs. Its content comes from cycle accurate simulations of
the two processors on general test programs. Overall, the HeRVé processor is a little slower than
the Kôika one, by about 4%. This is due to the split of the Execute stage by a whole pipeline, with
instructions taking slightly longer to execute. To put these processors in perspective, they execute
about the same number of instruction per second as an Intel i486 (1990) or an ARM3 processor (1990).

imgmorse medianprog shqsort tiny
100

101

102

103

104

105

106

107

Program name

Cy
cl
e
co
un

t(
lo
g
sc
al
e)

HeRVé @ 25 MHz
Kôika @ 25 MHz

Figure 8: Comparison of the performance of the HeRVé and Kôika processors in terms of cycle count
at a fixed clock frequency of 25MHz.

These two design have not only been simulated but also synthesized on a FPGA board. I have
used the ECPIX5 platform to test the two CPUs and compare them. The synthesis has been done

10



imgmorse medianprog shqsort tiny

2

4

6

8

10

12

14

16

Program name

M
IP
S

HeRVé @ 25 MHz
Kôika @ 25 MHz

Figure 9: Performance evaluation of the HeRVé and Kôika processors based on MIPS (Millions of
Instructions Per Second) at a constant clock speed of 25MHz.

with Yosys [9] and the placement with nextpnr [10]. The HeRVé processor performs as expected and
simulated on the FPGA. The table 2 resumes the differences of the synthesis of the two processors. A
LUT, acronym for “Look-Up Table”, is the component of FPGAs that enables them to encode any
combinatorial logic function. A D Flip-Flop is an electronic component used to store data from one
cycle to another.

The main information in this table is:

• The HeRVé CPU is about two times the size of the Kôika one. It uses twice as many as LUTs
and about a third as many D Flip-Flops.

• This increase in size does not have a linear impact on the critical path. In fact, the critical
path is only increased by 12%, which translates into a drop in maximum frequency of the
same order. More over, the increase of the critical path is almost completely due to additional
routing.

HeRVé Kôika

Used LUTs 12 189 (27%) 6312 (14%)
Used D Flip-Flops 3090 (7%) 1961 (4%)

Critical path
Logic 9.0 ns 8.9 ns

Routing 29.5 ns 25.3 ns
Total 38.5 ns 34.2 ns

Max frequency 25.96MHz 29.19MHz

Table 2: Statistics on the FPGA synthesis of the two processor with Yosys and nextpnr.

5 Towards proofs
Being written in Kôika, proofs proofs can be made on the HeRVé CPU design. For the moment, these
proofs can only be made with the SAT with the Z3 SMT solver [11].

11



Reasoning on theHeRVé processor is a littlemore challenging than on the previousKôika processor
because of its execution pipeline. With the appearance of this pipeline, the conditions ensuring
conflict-free execution of the rules are more complex. Moreover, because of the breakdown of the
old Execute rule, instruction execution now occurs on multiple cycles, that need to be simulated to
conduct proofs. This has not yet been done.

The majority of the proofs about the behavior of shadow-stack on the Kôika CPU [3] have been
reintegrated for the HeRVé design. However, these proofs are based on the stronger assumption that
the Jump rule is executed. This rule is responsible for the checks performed by the shadow stack. But
assuring that this rule will run is not obvious. The establishment of formal conditions determining
whether the execution of a rule is likely to lead to a conflict has been done for some stages of the
HeRVé CPU. However, work remains to be done in order to obtain such conditions for all the rules.

6 Conclusion
Learning and designing a RISC-V processor from the example given in Kôika was a very interesting
project, not without its share of challenges. It took time to design a general-purpose pipeline that was
robust and flexible enough to handle interrupts. The result, HeRVé, although still simplistic for use as
a general-purpose processor, is quite a success. Its performance, given the increase in processor size,
is satisfactory. The complexity introduced by all the changes made disturbs the proofs a little, but
they can still be carried out automatically using the Z3 solver.

This project could be continued by adding new security mechanisms to the processor, such as
privilege levels or an MMU3. Working towards an in-depth formal verification of this design is also
possible, and would increase confidence in this processor.

A digital version of this document is available at the following address:
https://gabriel.desfrene.fr/herve/report.pdf

3Memory Mapping Unit, this is the part of the processor that isolates processes in memory.

12

https://gabriel.desfrene.fr/herve/report.pdf


References
[1] Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind. “The essence of

Bluespec: a core language for rule-based hardware design”. In: Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation. Association for
Computing Machinery (ACM), 2020, pp. 243–257. doi: 10.1145/3385412.3385965.

[2] The Coq Proof Assistant. Version 8.14.1. The Coq development team, Dec. 2021. url: https:
//coq.inria.fr/.

[3] Matthieu Baty, Pierre Wilke, Guillaume Hiet, Arnaud Fontaine, and Alix Trieu. “A Generic
Framework to Develop and Verify Security Mechanisms at the Microarchitectural Level:
Application to Control-Flow Integrity”. In: 2023 IEEE 36th Computer Security Foundations
Symposium (CSF). Institute of Electrical and Electronics Engineers (IEEE), 2023, pp. 372–387.
doi: 10.1109/CSF57540.2023.00029.

[4] The RISC-V Instruction Set Manual: Volume II: Privileged Architecture. 20240411th ed. RISC-V
International. Apr. 2024.

[5] Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind. Koîka. url: https:
//github.com/mit-plv/koika.

[6] The RISC-V Instruction Set Manual Volume I: Unprivileged Architecture. 20240411th ed. RISC-V
International. Apr. 2024.

[7] Gabriel Desfrene, Pierre Wilke, and Matthieu Baty. HeRVé Processor. Aug. 2024. url: https:
//gitlab.inria.fr/SUSHI-public/FMH/herve.

[8] Pierre Wilke and Matthieu Baty. Koîka mirror of the SUSHI Inria Team. Aug. 2024. url:
https://gitlab.inria.fr/SUSHI-public/FMH/koika.

[9] Claire Wolf. Yosys Open SYnthesis Suite. Version 0.43. July 2024. url: https://yosyshq.net/
yosys/.

[10] nextpnr – Next Generation Place and Route. Version 0.7. Jan. 2024. url: https://github.com/
YosysHQ/nextpnr.

[11] Microsoft Research. Z3 Theorem Prover. Version 4.13.0. Mar. 2024. url: https://github.
com/Z3Prover/z3.

13

https://doi.org/10.1145/3385412.3385965
https://coq.inria.fr/
https://coq.inria.fr/
https://doi.org/10.1109/CSF57540.2023.00029
https://github.com/mit-plv/koika
https://github.com/mit-plv/koika
https://gitlab.inria.fr/SUSHI-public/FMH/herve
https://gitlab.inria.fr/SUSHI-public/FMH/herve
https://gitlab.inria.fr/SUSHI-public/FMH/koika
https://yosyshq.net/yosys/
https://yosyshq.net/yosys/
https://github.com/YosysHQ/nextpnr
https://github.com/YosysHQ/nextpnr
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3

	Introduction
	The Kôika HDL
	A Concurrent HDL
	Rule-based HDL
	Resolving rule conflicts
	Refining write and read

	Rewriting the CPU
	Kôika's CPU example
	Control and Status Registers (CSR)
	Pipeline modifications
	The Flow rule
	The Control rule

	Experiments and Synthesis
	Towards proofs
	Conclusion

