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Abstract SystemVerilog remains one of the most widely used languages
for designing and verifying digital circuits. Despite its importance, the
SystemVerilog standard suffers from ambiguities and inconsistent imple-
mentations between tools, creating portability challenges. Formal methods
can provide precise semantics to address these issues.
As a first step, we tackle SystemVerilog’s mechanism for determining the
bit-width of each expression that appears in a design. Determining the
bit-width of SystemVerilog expressions is surprisingly subtle because an
expression’s bit-width is context-dependent: it can depend on both its
children and its parents.
We present a comprehensive formal treatment of this problem. First,
we develop a Rocq formalization of the SystemVerilog specification as
currently written. We then construct a bidirectional type inference system
that captures the context-dependent nature of SystemVerilog expressions
and prove its equivalence to our formalization of the existing IEEE
standard via a machine-checked proof. Finally, we provide a reference
implementation that determines expression bit-widths in linear time and
prove its correspondence to our type system, also machine-checked in
Rocq.
Our approach provides a precise mathematical foundation for this aspect
of the language while maintaining full compatibility with the existing
standard. Additionally, we propose improvements to the SystemVeri-
log standard that eliminate several redundancies and ambiguities while
preserving existing behaviour.

Keywords: Bidirectional typing · Type inference · Hardware description
languages · Formal semantics · Context-dependent typing · Machine-
checked proofs · Language standardization · SystemVerilog

1 Introduction

Verilog and its successor SystemVerilog have been foundational to digital design
since 1984 [12]. These hardware description languages have enabled the design,
verification, and synthesis of everything from simple logic gates to complex
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System-on-Chip (SoC) designs. Today, they represent the industry standard for
both FPGA and ASIC design flows, with SystemVerilog being adopted across
the majority of functional verification projects according to recent industry
surveys [13]. The language is now defined by IEEE 1800-2023, officially titled the
“SystemVerilog Language Reference Manual” (LRM) [16].

Despite SystemVerilog’s widespread adoption, the language specification
presents significant challenges for both tool developers and users. The current
standard spans 1,354 pages—nearly twice the length of the ISO C standard’s
758 pages—and contains extensive prose descriptions that can lead to ambiguous
interpretations. This complexity has resulted in what industry experts character-
ize as ‘unclear specifications on how to interpret SystemVerilog code’ [22]. The
practical consequences of these specification ambiguities are substantial. As Dave
Rich, Technical Chair of the IEEE SystemVerilog Working Group, observes:

Many users avoid adopting SystemVerilog because feature support from
different tools and vendors of the rapidly changing LRM had been so
inconsistent. To this day, people continue using Verilog-1995 syntax and
avoid using features added by Verilog-2001 (e.g., ANSI-style ports and
the power operator) [22].

This inconsistency across tools has created a fragmented ecosystem where
users cannot rely on portable behavior, leading to the development of extensive
test suites like sv-tests to characterize tool-specific interpretations [3].

To address these specification ambiguities and ensure reliable tool implement-
ations, researchers have increasingly turned to formal methods. These approaches
aim to provide mathematically rigorous foundations for SystemVerilog tools,
enabling developers and enterprises to build designs and verification environ-
ments that demonstrably conform to the LRM. Recent efforts include the Vera
equivalence checker [20], the Lutsig verified Verilog compiler [17], and testing
frameworks such as Verismith [6, 15] and ChiGen [24].

However, to achieve a fully verified SystemVerilog toolchain—one that provides
end-to-end guarantees from source code to final implementation—a critical miss-
ing component is a formally verified SystemVerilog type checker. Previous form-
alization efforts have not addressed bit-width inference with sufficient rigor.
Featherweight Verilog provides a minimal core calculus for Verilog’s synthesizable
subset but employs only generic types without bit-width inference [14]. Chen et
al.’s tractable operational semantics for SystemVerilog handles bit-width compu-
tations algorithmically but lacks formal typing rules necessary for mechanized
correctness proofs [2]. Choi et al.’s denotational semantics approach assumes
bit-widths are predetermined [4] and Lööw’s analysis of the LRM inconsistencies
focuses on simulation semantics rather than bit-width determination rules [18].

This paper addresses this gap by developing the first bidirectional type system
for SystemVerilog bit-width determination. Bidirectional typing, as demonstrated
by Pierce and Turner, provides an elegant foundation for reasoning about sub-
typing [11,21]. This is particularly relevant because bit-width determination in
SystemVerilog can naturally be formulated as a subtyping problem: a bit-vector
of width s is a subtype of a bit-vector of width t whenever t ě s. Recognizing
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this correspondence between bit-vector width inference and bidirectional typing
underpins the theoretical foundation of our formal framework.

However, in SystemVerilog, the bit-width of a sub-expression cannot be
determined in isolation; it depends on contextual information that may itself
rely on bit-widths computed earlier. This circular dependency leads the LRM
to specify a complex two-phase algorithm for bit-width determination. Our
approach resolves this interdependency in a principled way while providing
formal guarantees to the LRM algorithm. Furthermore, our formal framework is
designed to facilitate integration with existing verification and compilation tools,
potentially enhancing the formal guarantees provided by the previously cited
systems.

We claim the following contributions:

Contribution 1 We formalize an important subset of the IEEE 1800 specifica-
tion for bit-width determination in the Rocq theorem prover [23], providing
a precise mathematical interpretation of the standard’s prose descriptions.

Contribution 2 We develop a bidirectional type system that captures the
context dependent nature of SystemVerilog expression bit-widths, introducing
formal typing rules and proving key properties.

Contribution 3 We provide machine-checked proofs that our type system is
equivalent to our formalization of the LRM specification.

Contribution 4 We derive a reference implementation that computes bit-widths
in linear time and provide a Rocq-checked proof of its correctness with respect
to our type system.

Contribution 5 We present a proposal to improve the treatment of bit-width
determination in the IEEE 1800 standard. This proposal is grounded in
the formal framework developed in this work and aims to provide a clear,
unambiguous definition of the bit-width of SystemVerilog expressions.

2 Formalizing the LRM

SystemVerilog is fundamentally designed to describe hardware circuits, which
imposes specific constraints on expression evaluation. All operations must ul-
timately be translated into physical circuitry. Therefore, all operands within
expressions must be appropriately sized according to the constraints imposed
by both the operation type and the dimensions of participating operands. For
instance, the LRM establishes that binary operations, such as addition, require
both operands to have identical bit-width, which subsequently determines the
width of the resulting expression. This bit-width requirement ensures that the
hardware synthesis process can generate consistent and predictable circuit im-
plementations. Crucially, this constraint guarantees proper handling of signed
operations, where operand sign extension must be correctly managed to preserve
arithmetic semantics.

In this section, we explain how SystemVerilog’s expression bit-width mechan-
isms work. After presenting examples and a note on our expression grammar, we
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detail our Rocq formalization approach for modeling this mechanism, based on
the LRM requirements.

2.1 How Sizing Works in SystemVerilog

The self-determined width of an expression (including operands) is the bit-width
determined solely by the expression itself, independent of its evaluation context.
This constitutes an intrinsic property of the expression, corresponding to what the
LRM refers to in its latest version [16, §I.11.6] as a self-determined expression.3
Practically, this property ensures that operand widths can be computed through
local analysis alone. For instance, the self-determined width of an 8-bit bus is 8,
as is the self-determined width of the literal 8'd128.

The computation of self-determined width follows a recursive, bottom-up
traversal strategy that we will call determine. This process begins with leaf nodes
(operands) whose bit-width are explicitly known, then propagates upward through
the abstract syntax tree according to operator-specific sizing rules. Each node of
the abstract syntax tree is annotated with its self-determined width.

In the following examples, we assume that the operand x is defined with a
self-determined width of 8 bits, y with a self-determined width of 4 bits, and
z with a self-determined width of 1 bit. These assumptions correspond to the
following SystemVerilog declarations:

1 logic [7:0] x; // 8-bit variable
2 logic [3:0] y; // 4-bit variable
3 logic z; // 1-bit variable
4

5 assign ex1 = x + (y + z);
6 assign ex2 = {x, y + z};

The self-determined width represents the minimal bit-width that each sub-
expression requires for proper evaluation. Figure 1 illustrates the determine
process for two expressions. During this phase, binary operations return the
maximum self-determined width of their arguments, thereby enforcing the bit-
width uniformity constraint described above. Concatenation operations exhibit
different behavior, as the LRM mandates that the self-determined width of such
expressions equals the sum of the self-determined widths of all participating
arguments.

Leaf nodes provide known self-determined widths, while operation nodes
compute their widths based on their children’s dimensions. The red arrows
indicate bit-width information flow during the computation process. Nodes
highlighted in orange represent the currently processed elements during traversal.
Each AST node annotation is represented with a semicolon followed by its
self-determined width.
3 This concept is subsequently applied to sign and type computation in other sections

of the LRM
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Figure 1. Self-determined width computation (determine phase)

As seen in the previous examples, the determine process only computes the self-
determined width of the top level expression. The width of each sub-expression is
computed during a second process called propagate. This process flows bit-width
information back down the AST. During this process, sub-expressions are not
always sized to their self-determined width; instead, they may be resized according
to the surrounding context. We call this context-determined width the final width.

This second phase is mandatory, because evaluating expressions by only
taking into account their self-determined width could result in an information
loss. Consider an addition operation involving two operands: evaluating the result
strictly according to the self-determined width would yield an output sized to
match the maximum operand width, thereby discarding the carry-out bit.

An alternative solution could be to require that arithmetic operations always
produce results that are one bit larger than their operands, in order to preserve
carry information. However, this approach proves unsatisfactory in practice,
as it would lead to systematic circuit growth throughout the design hierarchy,
consuming unnecessary hardware resources when carry-out bits are not required.

SystemVerilog adopts a flexible strategy to address this sizing dilemma. When
carry-bit preservation is necessary, designers can specify larger contexts for
expression evaluation. The propagate phase ensures that sub-expressions are ap-
propriately resized according to their contextual requirements, thereby generating
results with the precise bit-widths demanded by the surrounding logic.

Figure 2 illustrates this process for a binary addition operation. The notation
x Ñ y denotes that a node possesses a self-determined width of x bits and must
be adjusted to a final width of y bits to satisfy the contextual constraints imposed
by the expression.
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BinOp: 8 � 8

x: 8 BinOp: 4

y: 4 z: 1

BinOp: 8 � 8

x: 8 � 8 BinOp: 4 � 8

y: 4 z: 1

BinOp: 8 � 8

x: 8 � 8 BinOp: 4 � 8

y: 4 � 8 z: 1 � 8

Figure 2. Context-dependent resizing (propagate phase) for binary addition

Certain operators, such as concatenation, establish context boundaries that
isolate their arguments from external sizing influences. These boundaries ensure
that specific operands remain self-determined regardless of the surrounding
context. Figure 3 illustrates this concept, where context boundaries (depicted as
arcs across edges) prevent bit-width information from propagating downwards
beyond the operator. Consequently, the nested binary operation maintains its
self-determined width of 4 bits rather than being resized to match the bit-width
of the x variable.

Concat: 12 � 12

x: 8 BinOp: 4

y: 4 z: 1

Concat: 12 � 12

x: 8 � 8 BinOp: 4 � 4

y: 4 z: 1

Concat: 12 � 12

x: 8 � 8 BinOp: 4 � 4

y: 4 � 4 z: 1 � 4

Figure 3. Context boundary enforcement in concatenation operations

In summary, the complete sizing mechanism operates through a two-phase
process. The first phase, determine, synthesizes bit-width information throughout
the expression hierarchy. This phase compute the final widths of the top-level
and all self-determined sub-expressions. This synthesis process follows LRM
constraints specific to each node type.

The second phase, propagate, computes the final width for all non-self-
determined sub-expressions by propagating bit-width information downward
through the AST. These sub-expressions derive their final width from the sur-
rounding context and from their intrinsic properties.

This dual-phase approach ensures operations possess sufficient bit-width to
compute expected results. Additionally, it maintains minimal hardware overhead
through appropriate bit-width constraints (See theorem 1).
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2.2 Formal Expression Model

For our Rocq formalization of the LRM mechanism, we present a simplified
formalization of SystemVerilog expressions that captures all the typing behaviors.
In SystemVerilog, expressions are defined as follows:

An expression is a construct that combines operands with operators to
produce a result that is a function of the values of the operands and the
semantic meaning of the operator. [16, §I.11.2]

Operands represent atomic values in SystemVerilog that cannot be decomposed
into further operations. This class encompasses literals, variables, structure
members, union members, function calls, and other primitive constructs (the
complete enumeration is in [16, §I.11.2]). For our formalization, we require
operands to satisfy the following property:

Property 1. The self-determined width of an operand is always well-defined and
determined by its declaration, literal specification, or result type.

We assume a normalization preprocessing step that ensures no operand
contains nested expressions. This transformation introduces fresh variables for
expressions composing operands, particularly targeting function calls. Since func-
tion calls are classified as operands, their self-determined width is defined by the
function’s return type. For variadic functions such as type casts, the output width
can be determined from the function signature and the self-determined widths
its arguments (which themselves require typing analysis). This normalization
guarantees that all operands possess well-defined self-determined width while
simplifying subsequent operations.

We categorize SystemVerilog operations by their sizing behaviors, yielding the
expression grammar shown in figure 4. In this grammar, o denotes a SystemVerilog
operand, l represents a left-hand side expression during assignment, and n is an
integer. We assume that all constant expressions have been pre-evaluated.

In SystemVerilog reduction operations apply a bitwise operator across all bits
of one operand (e.g., &x is true if all bits of x are 1). Concatenation builds a
wider bit vector by joining operands side by side (e.g., {a, b} places a’s bits
above b’s). Replication repeats an expression a fixed number of times to form a
larger vector (e.g., {3{a}} concatenates three copies of a).

2.3 Grammar Simplifications

We present the following observations regarding our grammar formalization:

Assignments Compound assignment operators (+=, etc.) are treated as syntactic
sugar, e.g. a += b is interpreted as a = a + b, as specified in [16, §I.11.4.1].

Replication Operator The LRM constrains the Replication operator to op-
erate solely on Concatenation expressions. We adopt a more permissive
approach by allowing replication of any expression because it simplifies our
typing rules.
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e ::“ o operands
| BinaryOp(e1, e2) binary operations (+, -, *, /, . . . )
| UnaryOp(e) unary operations (+, -, ~, ++, --)
| ComparisonOp(e1, e2) comparison operations (==, !=, >, >=, . . . )
| LogicOp(e1, e2) logical operations (&&, ||, ->, <->)
| ReductionOp(e) reduction operations (!, &, |, ˆ, . . . )
| ShiftOp(e1, e2) shift operations and power (>>, <<, **, . . . )
| AssignmentOp(l, e) assignment
| Conditional Op(e1, e2, e3) conditional expression
| Concatenation(e1, ..., ek) concatenation
| Replication(n, e) replication

Figure 4. SystemVerilog expression grammar categorized by typing behavior

Inside Operator We do not formalize the Inside operator since it can be
derived from a sequence of Or operations during normalization. This aligns
with the semantics prescribed in [16, §I.11.4.13].

Streaming Operators Streaming operators are excluded from our formaliza-
tion as they behave identically to concatenation with respect to bit-width
determination. The streaming operator’s reordering of the bits does not affect
its overall bit-width.

Dist Operator Similarly, we exclude the dist operator since Annex A of the
LRM restricts its usage to constraint blocks, which fall outside the scope of
general expression evaluation.

2.4 Formalizing the LRM

The LRM does not present a unified typing system for bit-width determination.
Instead, it provides fragments of an algorithm distributed across multiple sections.
This algorithm consists of two primary phases: determine and propagate, as
described in §I.11.8.2:

Determine the expression size based upon the standard rules of expression
size determination [. . .]. Propagate the type and size of the expression
(or self-determined subexpression) back down to the context-determined
operands of the expression. [16, §I.11.8.2]

The LRM defines context-determined expressions as follows:
A context-determined expression is one where the bit length of the expression
is determined by the bit length of the expression and by the fact that it is
part of another expression. [16, §I.11.6.1]

The Determine Phase. The first phase is well-defined by Table 11-21 in [16,
§I.11.6.1]. This phase computes the self-determined width for each expression in
a bottom-up fashion, as seen in the example in figure 1. We formalize this as a
recursive function determine : Expr Ñ N, defined in figure 5.
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This formalization relies on two auxiliary functions. The function Γ maps each
operand in O (the set of all operands) to its declared bit-width, providing the
foundation for all bit-width computations. This function is a direct consequence
of property 1 that we established for operands. The function ϕ determines
the bit-width of left-hand sides in assignments. This function exists because
assignment targets have a simpler syntactic structure than general expressions
(see [16, §A.8.5]). They consist of operands, concatenations of assignment targets,
or streaming concatenations of assignment targets. This restricted structure
allows us to construct a simple recursive function to compute their width.

determinepoq “ Γ poq (where o P O)
determinepBinaryOppe1, e2qq “ maxpdeterminepe1q, determinepe2qq

determinepUnaryOppeqq “ determinepeq

determinepComparisonOppe1, e2qq “ 1

determinepLogicOppe1, e2qq “ 1

determinepReductionOppeqq “ 1

determinepShiftOppe1, e2qq “ determinepe1q

determinepAssignmentOppl, eqq “ ϕplq

determinepConditionalOppe1, e2, e3q “ maxpdeterminepe2q, determinepe3qq

determinepReplicationpn, eqq “ n ˆ determinepeq

determinepConcatenationpe1, . . . , ekqq “

k
ÿ

i“1

determinepeiq

Figure 5. Our determine function inspired from Table 11-21 in [16, §I.11.6.1]

The Propagate Phase. The propagate phase operates top-down, as described
earlier (see examples in figures 2 and 3). Starting from the result of the determine
phase, it flows bit-width information back into the expression tree to compute the
final width of each sub-expression. While not explicitly defined in the LRM, this
phase is implied by various requirements scattered throughout the specification.

Let e be an expression. We model this phase as a function propagatee :
Pathpeq Ñ N that maps each valid path in e to the final width of the corresponding
sub-expression. A path is represented as a list of natural numbers encoding
navigation through the abstract syntax tree: starting from the root, each number
indicates which child to visit next (0 denotes the first child, 1 the second, and so
on). For example, the path r1, 0s refers to the first child of the second child of the
root expression. The empty path rs refers to the root expression itself. We use the
notation p ¨ k to denote extending path p with index k (the ‘snoc’ operation). We
denote by e|p the sub-expression of e reached by following the path p. Figure 6
shows all constraints mandated by the LRM for propagatee.
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propagateeprsq “ determinepeq (1)

For e|p “ ReductionOppe1
q:

propagateepp ¨ 0q “ determinepe1
q (2)

For e|p “ LogicOppe0, e1q:

propagateepp ¨ 0q “ determinepe0q (3)
propagateepp ¨ 1q “ determinepe1q (4)

For e|p “ Concatenationpe0, . . . , ekq, with i P t0, . . . , ku:

propagateepp ¨ iq “ determinepeiq (5)

For e|p “ Replicationpn, e1
q:

propagateepp ¨ 0q “ determinepe1
q (6)

For e|p “ ComparisonOppe0, e1q:

propagateepp ¨ 0q “ maxpdeterminepe0q, determinepe1qq (7)
propagateepp ¨ 1q “ maxpdeterminepe0q, determinepe1qq (8)

For e|p “ BinaryOppe0, e1q:

propagateepp ¨ 0q “ propagateeppq (9)
propagateepp ¨ 1q “ propagateeppq (10)

For e|p “ UnaryOppe1
q:

propagateepp ¨ 0q “ propagateeppq (11)

For e|p “ ShiftOppe0, e1q:

propagateepp ¨ 0q “ propagateeppq (12)
propagateepp ¨ 1q “ determinepe1q (13)

For e|p “ ConditionalOppe0, e1, e2q:

propagateepp ¨ 0q “ determinepe0q (14)
propagateepp ¨ 1q “ propagateeppq (15)
propagateepp ¨ 2q “ propagateeppq (16)

For e|p “ AssignmentOppl, e1
q:

propagateepp ¨ 0q “ maxpdeterminepe1
q, ϕplqq (17)

Figure 6. LRM-derived constraints defining our propagatee function.
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Section §I.11.8.2 of the LRM states:
Propagate the type and size of the expression (or self-determined subexpres-
sion) back down [. . .] the expression. [16, §I.11.8.2]

From this statement, we derive our first constraint, equation (1), which applies
to the top-level expression. Furthermore, when a sub-expression at position p
within an expression e is self-determined, the constraint given in equation (18)
applies:

propagateeppq “ determine pe|pq (18)

This principle serves as the basis for the constraints presented in equations (2)
to (6), since Table 11–21 identifies these child expressions as self-determined.
In particular, equation (2) is a specific instance of equation (18) for the child
of a reduction operator. In this case, the reduction operator itself is located at
position p, its child expression, e1 at position p ¨ 0, and we have e|p¨0 “ e1.

Comparison operations require special treatment. Table 11-21 specifies that
‘Operands are sized to max pLpiq, Lpjqq’, where i and j denote the operands and
L represents the determine function. This yields the constraints in equations (7)
and (8).

We assume that operands not marked as self-determined in Table 11-21 are
context-determined. For operations with such operands, the LRM states:

In general, any context-determined operand of an operator shall be the same
type and size as the result of the operator. [16, §I.11.8.2]

This constraint applies to binary and unary operations (equations (9) to (11))
and extends naturally to operators with mixed operand types, such as shifts and
conditionals (equations (12) to (16)).

Assignment expressions require careful treatment. The LRM specifies:
When the right-hand side evaluates to fewer bits than the left-hand side, the
right-hand side value is padded to the size of the left-hand side.
[. . .]
If the width of the right-hand expression is larger than the width of the
left-hand side in an assignment, the MSBs of the right-hand expression shall
be discarded to match the size of the left-hand side. [16, §I.10.7]

These requirements imply that the maximum of the left-hand side bit-width
and the right-hand side’s self-determined width propagates downward. When
truncation occurs, it happens at the top level (‘the MSBs of the right-hand
expression shall be discarded’), treating the expression as self-determined. These
properties yield the constraint formalized in equation (17).

From the constraints of figure 6, we verified in Rocq that propagatee is uniquely
defined for every sub-expression of any expression.
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3 Bidirectional Typing Framework

We now present our bidirectional typing [21] system, designed to capture the
expression bit-width computation of SystemVerilog expressions. Bidirectional
typing combines two modes of typing: type checking, which checks that a program
e in a context Γ has type τ (Γ $ e ð τ), and type synthesis, which determines a
type τ from the program e in a context Γ (Γ $ e ñ τ). Using checking enables
bidirectional typing to support features for which inference is undecidable; using
synthesis enables bidirectional typing to avoid the large annotation burden of
explicitly typed languages [10]. This technique has been used for dependent
types [5], subtyping [21], polymorphism [19], and object-oriented languages
including C# [1]. The computation of bit-widths in SystemVerilog presents
a particularly suitable application domain for bidirectional typing due to the
natural subtyping relation on bit-widths. We introduce two complementary typing
judgments:

– The synthesis judgment, written e ñ n % f , states that expression e has a
self-determined width n, where f maps each sub-expression of e to its final
width.

– The checking judgment, written e ð n % f , states that expression e may
be resized to bit-width n, where f maps each sub-expression of e to its final
width.

These judgments work in tandem: the synthesize judgment computes in-
trinsic properties of expressions (their self-determined widths), while the check
judgment propagates width constraints down the AST, imposing bit-width on
sub-expressions.

In both judgments, the function f serves as a record of the typing decisions
made for all sub-expressions, including the root one. Formally, f : Pathpeq Ñ N
maps each valid path in expression e to the final width of the corresponding
sub-expression. This path-based representation allows us to precisely track the
final width of every sub-expression within an expression tree. This capability is
essential for proving the equivalence between our typing system and the current
LRM specification.

Unarypf, tq ::“

#

rs ÞÑ t

0 ¨ p ÞÑ fppq
Binarypt, f, gq ::“

$

’

&

’

%

rs ÞÑ t

0 ¨ p ÞÑ fppq

1 ¨ p ÞÑ gppq

Ternarypt, f, g, hq ::“

$

’

’

’

&

’

’

’

%

rs ÞÑ t

0 ¨ p ÞÑ fppq

1 ¨ p ÞÑ gppq

2 ¨ p ÞÑ hppq

Narypt, f1, . . . , fkq ::“

#

rs ÞÑ t

i ¨ p ÞÑ fippq

Figure 7. Typing function combinators
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To construct these functions during the typing process, we define the combin-
ators shown in figure 7. These combinators construct typing functions from a
bit-width t (representing the final width of the current expression e) and one or
more functions Pathpiq Ñ N (representing the typing history of child expressions).
The result is a complete typing function Pathpeq Ñ N for the entire expression.

We present the typing rules by first explaining how expressions are resized
in SystemVerilog. In the following section, we discuss how the self-determined
width of an expression is computed.

3.1 Context-Dependent Resizing Rules

This section explains how expressions are resized when their context requires it.
We focus on implicit resizing, not explicit resize casts. This operation preserves
all information: expressions are never truncated, only extended when resized.

In SystemVerilog, resizing occurs at the deepest possible nodes in the AST,
meaning resize operations propagate downward through the tree. We organize
expressions into two categories based on their resizing behavior.

Atomically Resizable Expressions. They may be resized without affecting their
internal operand widths. These include operands, comparisons, logical expressions,
reductions, assignments, concatenations and replications. We denote the set of
atomically resizable expressions as R.

When an atomically resizable expression is resized to its final width, only the
expression’s result is extended, its operands remain unchanged. The corresponding
typing rule is Resizeð, shown in figure 8.

To resize expression e to the bit-width t, we verify that its self-determined
width s is no larger than t. This rule parallels bidirectional typing in subtyping
systems [11], where a bit-vector of width s acts as a subtype of a bit-vector of
width t when s ď t.

The bit-width mapping f is updated to reflect the new width, but since
resizing atomically resizable expressions leaves their operands unchanged, only
the empty path requires updating.

Propagating Resize Operations. Certain expressions propagate their target width
to some or all of their operands. These operations correspond to expressions with
context-determined arguments. The formal typing judgments for the propagating
statements are presented in figure 8. We distinguish four cases:

– Binary Operations propagate the target width to both operands, as shown
by the BinOpð rule.

– Unary Operations propagate the target width to their single operand, as
shown by the UnOpð rule.

– Shift Operations propagate the target width only to the left operand, while
the right operand is typed to its self-determined width, as shown by the
Shiftð rule.
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– Conditional Operations propagate the target width to both branches,
while the condition is typed to its self-determined width, as shown by the
Condð rule.

These four cases encompass all non-atomically resizable expressions in Sys-
temVerilog’s expression typing system.

3.2 Computing Self-Determined Width

This section presents the rules for computing the self-determined width of ex-
pressions, which represents the natural bit-width an expression would have
without any external contextual constraints. The complete set of synthesis rules
is presented in figure 9.

The most critical aspect of self-determined width computation involves oper-
ations that require multiple typing judgments. Binary operations, comparisons,
assignments, and conditionals each require two rules because one of their operands
may be resized to match the other’s self-determined width.

Consider binary operations, which must ensure both operands have the same
width for evaluation. Since operands can only grow, the result width must be
the maximum of both operand bit-width. When the left-hand side is larger, we
apply the LBinOpñ rule, which synthesizes the self-determined width of the left
operand t and requires that the right operand may be resized to t. Conversely,
when the right-hand side is larger, we apply the RBinOpñ rule, which synthesizes
the self-determined width of the right operand and requires that the left operand
may be resized accordingly.

The same pattern applies to comparisons and conditionals, though with
different result widths. Comparisons always produce 1-bit results despite requiring
operand width matching, while conditionals must ensure both branches have
compatible widths.

Assignment operations demonstrate additional complexity. The RAssignñ

rule applies when the right-hand side is strictly larger than the left-hand side of
the assignment. In this case, and only in this case within SystemVerilog expression
typing, the upper bits of the right-hand side are discarded to match the left-hand
side’s smaller width. The alternative rule, LAssignñ, applies when the right-hand
side may be resized to the left-hand side width. In both cases, the self-determined
width of an assignment is determined by the left-hand side width.

Operations with asymmetric semantics, such as shifts and logical operations,
have simpler synthesis rules. Shift operations inherit their width from the left
operand only (Shiftñ), while logical operations always produce 1-bit results
regardless of operand widths (Logicñ).

Structural operations such as replication and concatenation have straightfor-
ward width computations: replication multiplies the operand size by the replica-
tion count (Replñ), while concatenation sums all operand widths (Concatñ).
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e ñ s % f s ď t e P R
Resizeð

e ð t % f
“

rs ÞÑ t
‰

e ð t % f
UnOpð

‘e ð t % Unarypt, fq

e ñ te % fe a ð t % fa b ð t % fb
Condð

e?a:b ð t % Ternarypt, fe, fa, fbq

a ð t % fa b ð t % fb
BinOpð

a ‘ b ð t % Binarypt, fa, fbq

a ð t % fa b ñ tb % fb
Shiftð

a ‘ b ð t % Binarypt, fa, fbq

Figure 8. Resizing typing rules

Γ peq “ s e P O
Operandñ

e ñ s % trs ÞÑ su

e ñ t % f
UnOpñ

‘e ñ t % Unarypt, fq

e ñ t % f
Redñ

‘e ñ 1 % Unaryp1, fq

a ñ t % fa b ñ tb % fb
Shiftñ

a ‘ b ñ t % Binarypt, fa, fbq

a ñ ta % fa b ñ tb % fb
Logicñ

a ‘ b ñ 1 % Binaryp1, fa, fbq

a ñ t % fa b ð t % fb
LBinOpñ

a ‘ b ñ t % Binarypt, fa, fbq

a ð t % fa b ñ t % fb
RBinOpñ

a ‘ b ñ t % Binarypt, fa, fbq

a ñ t % fa b ð t % fb
LCmpñ

a ‘ b ñ 1 % Binaryp1, fa, fbq

a ð t % fa b ñ t % fb
RCmpñ

a ‘ b ñ 1 % Binaryp1, fa, fbq

ϕplq “ t e ð t % f
LAssignñ

pl = eq ñ t % Unarypt, fq

ϕplq “ t e ñ te % f t ă te
RAssignñ

pl = eq ñ t % Unarypt, fq

e ñ te % fe a ñ t % fa b ð t % fb
LCondñ

e?a:b ñ t % Ternarypt, fe, fa, fbq

e ñ te % fe a ð t % fa b ñ t % fb
RCondñ

e?a:b ñ t % Ternarypt, fe, fa, fbq

i P N e ñ te % f t “ i ˆ te
Replñ

{i e} ñ t % Unarypt, fq

e1 ñ t1 % fi . . . ek ñ tk % fk t “ t1 ` ¨ ¨ ¨ ` tk
Concatñ

{e1, ..., ek} ñ t % Narypt, f1, . . . , fkq

Figure 9. Self-determined width typing rules
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3.3 Soundness and Completeness Properties

Our typing system satisfies several fundamental properties that establish its
soundness and completeness. All properties presented here have been mechanically
verified in the Rocq theorem prover [23] with the functional extensionality axiom.

Totality. Every SystemVerilog expression can be typed in both synthesis and
checking modes:

Lemma 1 (Universal Typing). For every expression e:

1. There exist t and f such that e ñ t % f
2. There exist t and f such that e ð t % f

This property ensures our typing system is complete, it can assign bit-widths
to any syntactically valid SystemVerilog expression.

Determinism. The typing system produces unique results for each expression:

Lemma 2 (Typing Determinism). For any expression e:

1. If e ñ t1 % f1 and e ñ t2 % f2, then t1 “ t2 and f1 “ f2
2. If e ð t % f1 and e ð t % f2, then f1 “ f2

The synthesis mode uniquely determines both the self-determined width and
the complete typing function. The checking mode, given a target width, uniquely
determines how sub-expressions are sized.

Synthesis-Checking Correspondence. The two typing modes are related through
a fundamental correspondence that characterizes when an expression may be
resized:

Lemma 3 (Synthesis-Checking Equivalence). If e ñ t % f , then for any
width s:

t ď s ðñ Dg. e ð s % g

This theorem states that an expression may be resized to s if and only if s
is at least as large as its self-determined width. This captures the fundamental
principle that expressions in SystemVerilog can only grow, never shrink.

Minimality. The self-determined width represents the minimal width at which
an expression may be resized:

Theorem 1 (Synthesis as Minimal Width). Let e be an expression. If s is
the minimal width such that there exists g where e ð s % g, then there exists f
such that e ñ s % f .
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This property establishes that the self-determined width is not arbitrarily
determined but represents the minimal bit-width that preserves information
throughout the expression’s evaluation. This ensures that expressions are dimen-
sioned with sufficient width to maintain expected operational semantics while
simultaneously minimizing the circuitry footprint of the design. This follows from
lemmas 1 and 3.

These properties provide a solid theoretical foundation for our typing system,
ensuring it captures the intended properties of the LRM specification.

4 Formal Verification of LRM Compliance

Establishing backward compatibility with the current LRM specification is essen-
tial for the adoption of our formal framework. To achieve this, we prove that our
bidirectional typing system is equivalent to the algorithmic description scattered
throughout the LRM. To demonstrate this correspondence, we prove that for any
expression e, the typing function f produced by our synthesis judgment e ñ t % f
coincides with the propagatee function derived from the LRM specification. The
complete mechanized proofs can be interactively browsed online [9].

Sub-expression Correspondence. We establish the following fundamental lemmas:

Lemma 4 (Sub-expression Synthesis). If e ñ t % f and e|p “ e1 for some
path p, then there exist t1 and f 1 such that either e1 ñ t1 % f 1 or e1 ð t1 % f 1,
and for all paths k: fpp ¨ kq “ f 1pkq.

Lemma 5 (Sub-expression Checking). If e ð t % f and e|p “ e1 for some
path p, then there exist t1 and f 1 such that either e1 ñ t1 % f 1 or e1 ð t1 % f 1,
and for all paths k: fpp ¨ kq “ f 1pkq.

These lemmas establish that typing functions compose properly: the typing
function for a sub-expression can be extracted from the parent’s typing function
by shifting paths appropriately. This compositional property is essential for
relating our typing system to the LRM’s recursive structure.

Lemma 6 (Synthesis Computes Determine). For every expression e, there
exists a typing function f such that e ñ determinepeq % f .

This lemma ensures that our synthesis judgment correctly computes what
the standard defines as the self-determined width, establishing the foundation for
our equivalence proof.

From Specification to Typing System. We first prove that the function satisfying
the LRM’s propagate constraints correspond to the valid typing derivation:

Lemma 7 (Specification Implies Typing). For any expression e and func-
tion f : Pathpeq Ñ N, if f satisfies all LRM propagate constraints, then
e ñ determinepeq % f .
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The proof proceeds by path induction. We leverage lemma 6 to obtain an
initial typing derivation, then use lemma 4 and lemma 5 to show that the
typing function matches propagatee at each path. This correspondence is possible
because both the typing system and the LRM specification propagate widths
using identical structural rules for context-determined operands.

From Typing System to Specification. The converse direction establishes that our
typing system generates the function that satisfy all LRM constraints:

Lemma 8 (Typing Implies Specification). For any expression e, typing
function f , and width t, if e ñ t % f holds, then f satisfies all LRM propagate
constraints.

This proof proceeds by case analysis, verifying that each propagate constraint
from the LRM is preserved.

Main Equivalence Result. Combining lemma 7 and lemma 8, we obtain our main
equivalence result:

Theorem 2 (Typing System–LRM Equivalence). For any expression e and
function f : Pathpeq Ñ N, the two following statements are equivalent:

1. f satisfies all LRM propagate constraints for expression e.
2. e ñ determinepeq % f .

This equivalence, mechanically verified in Rocq, establishes that our bid-
irectional typing system provides a precise mathematical characterization of
the LRM’s bit-width determination algorithm. The proof demonstrates that
our formal framework preserves existing SystemVerilog semantics while offer-
ing a cleaner mathematical foundation suitable for formal verification and tool
development.

5 Implementation and Complexity

Building upon our bidirectional typing system, we derive a concrete algorithm
for computing expression bit-widths that closely follows the LRM’s two-phase
approach. Algorithm 1 computes the self-determined width bottom-up and al-
gorithm 2 propagates width information top-down to determine the final width of
each sub-expression. Typing a top-level expression e is done with the expression
propagatepe,determinepeqq.

Our implementation has been mechanically verified in Rocq and can be
extracted from our formalization to produce executable code. The complete source
code for our formalization and extracted algorithms is publicly available [8].
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Algorithm 1: Determine
Input: A SystemVerilog expression expr
Output: The self-determined width of expr

1 switch expr do
2 when expr is an operand do
3 return Γ pexprq

4 when expr is lhs ‘ rhs do // ‘ can be +, -, *, /, ...
5 lhsw Ð determineplhsq
6 rhsw Ð determineprhsq
7 return max

`

lhsw, rhsw
˘

8 when expr is ‘arg do // ‘ can be +, -, ~, ++, --
9 argw Ð determinepargq

10 return argw

11 when expr is lhs ‘ rhs do // ‘ can be ==, !=, >, >=, ...
12 return 1

13 when expr is lhs ‘ rhs do // ‘ can be &&, ||, ->, <->
14 return 1

15 when expr is ‘arg do // ‘ can be !, &, |, ˆ, ...
16 return 1

17 when expr is lhs ‘ rhs do // ‘ can be >>, <<, **, ...
18 lhsw Ð determineplhsq
19 return lhsw

20 when expr is lval = rhs do
21 lvalw Ð ϕplvalq
22 return lvalw

23 when expr is cond ? lhs : rhs do
24 lhsw Ð determineplhsq
25 rhsw Ð determineprhsq
26 return max plhsw, rhswq

27 when expr is {expr1, ... , exprN} do
28 for i P t1, . . . , Nu do
29 widthi Ð determinepexpriq

30 return
řN

i“0 widthi

31 when expr is {n arg} do
32 argw Ð determinepargq

33 return n ˆ argw
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Algorithm 2: Propagate
Input: A SystemVerilog expression expr, A targetWidth to resize expr to.
Result: All sub-expressions of expr are annotated with their final width

1 switch expr do
2 when expr is an operand do
3 Annotate expr with targetWidth

4 when expr is lhs ‘ rhs do // ‘ can be +, -, *, /, ...
5 propagate(lhs, targetWidth)
6 propagate(rhs, targetWidth)
7 Annotate expr with targetWidth

8 when expr is ‘arg do // ‘ can be +, -, ~, ++, --
9 propagate(arg, targetWidth)

10 Annotate expr with targetWidth

11 when expr is lhs ‘ rhs do // ‘ can be ==, !=, >, >=, ...
12 argw Ð max pdetermineplhsq,determineprhsqq

13 propagate(lhs, argw)
14 propagate(rhs, argw)
15 Annotate expr with targetWidth

16 when expr is lhs ‘ rhs do // ‘ can be &&, ||, ->, <->
17 propagate(lhs, determine(lhs))
18 propagate(rhs, determine(rhs))
19 Annotate expr with targetWidth

20 when expr is ‘arg do // ‘ can be !, &, |, ˆ, ...
21 propagate(arg, determine(arg))
22 Annotate expr with targetWidth

23 when expr is lhs ‘ rhs do // ‘ can be >>, <<, **, ...
24 propagate(lhs, targetWidth)
25 propagate(rhs, determine(rhs))
26 Annotate expr with targetWidth

27 when expr is lval = rhs do
28 propagate(rhs, max pϕplvalq,determineprhsqq)
29 Annotate expr with targetWidth

30 when expr is cond ? lhs : rhs do
31 propagate(cond, determine(cond))
32 propagate(lhs, targetWidth)
33 propagate(rhs, targetWidth)
34 Annotate expr with targetWidth

35 when expr is {expr1, ... , exprN} do
36 for i P t1, . . . , Nu do
37 propagate(expri, determine(expri))

38 Annotate expr with targetWidth

39 when expr is {n arg} do
40 propagate(arg, determine(arg))
41 Annotate expr with targetWidth
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5.1 Algorithm Verification

The key correctness result establishes that propagate correctly encompasses
the checking judgment:

Lemma 9 (Propagate/Check Correspondence). For any expression e and
width s where determinepeq ď s, the call propagatepe, sq produces annotations
such that the corresponding typing function f satisfies e ð s % f .

The typing function f is simply the lookup of annotations added during the
propagate pass: for each path p, the value fppq is the annotation at that path.
From this invariant, it follows that the overall algorithm is correct:

Theorem 3 (Algorithm Correctness). For any expression e, the typing
function f resulting from the call to propagatepe,determinepeqq is such that
e ñ determinepeq % f .

This establishes that our two-phase algorithm correctly implements the syn-
thesis judgment at the root expression, with all sub-expressions properly typed
according to our formal system.

5.2 Complexity Analysis

The algorithm achieves linear time complexity in the size of the expression tree
when determine calls are memoized. Without memoization, repeated calls to
determine during propagate lead to quadratic behavior, for instance, on deeply
nested concatenations where each level requires recomputing widths of all inner
expressions. With memoization, each expression node is visited exactly twice:
once during the bottom-up determine phase and once during the top-down
propagate phase.

6 Standardization Proposal

Drawing from our formal framework, we developed a proposal [7] to clarify
bit-vector expression bit-width in the LRM. The proposal addresses specification
ambiguities while preserving backward compatibility.

Our contribution includes three components: rigorous typing rules accessible
to engineers unfamiliar with formal methods, extensive examples demonstrating
how they are used, and the verified algorithm as a reference implementation. This
machine-checked algorithm provides tool developers with a reliable foundation
for SystemVerilog expression typing.

7 Conclusion

We have presented a formal framework for SystemVerilog expression bit-width
determination based on bidirectional typing. Our approach provides a precise
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mathematical foundation for this essential aspect of the language while maintain-
ing full backward compatibility with the IEEE 1800-2023 standard.

We demonstrated that the informal prose specifications scattered throughout
the 1,354-page LRM can be captured by a clean mathematical framework. The
bidirectional typing system naturally expresses the context-dependent nature of
SystemVerilog expression sizing through the interplay of synthesis and checking
judgments. The mechanized proofs in Rocq establish both the internal consistency
of our typing system and its equivalence to the LRM specification.

Looking forward, this work lays the foundation for a fully verified System-
Verilog type checker. Future work includes extending the framework to handle
signedness, all SystemVerilog types, and the full complexity of SystemVerilog’s
expression type system. This formal foundation could be used to develop verified
tooling for the SystemVerilog ecosystem.

By bridging the gap between informal language specifications and formal
methods, we hope to enable more reliable hardware design tools and ultimately
more trustworthy digital systems.
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