
Proposal for Improving Expression Size Determination in IEEE 1800

SystemVerilog

Authors

This document contains a proposal for inclusion in the current SystemVerilog Language Reference Manual (LRM), IEEE

1800-2023, to clarify and formalize the rules for determining expression bit-widths.

Paragraphs with a gray border on the left are extracts taken directly from the latest version of the LRM. The sections

containing text highlighted in red represent the specific content we believe could be replaced with our proposal. Our

propositions, in green, are organized as follows:

Sections 11.6.1 to 11.6.4 (Expression bit-widths): This material introduces a revised formalization for bit-width

determination, complete with rules governing this process, applicable to all SystemVerilog expressions.

Section 11.6.5 (Examples of bit-widths determination): This section provides examples demonstrating the use of

the bit-width determination rules defined in the preceding section. The current version of the LRM offers a

limited number of examples, primarily focusing on self-determined expressions. This draft proposes an update to

this section, incorporating the new bit-width determination mechanism and extensive examples for all kinds of

SystemVerilog expressions.

Section A (Algorithmic Overview): This content is proposed as a technical Appendix to the LRM. It formally describes

the algorithms used to compute SystemVerilog expression bit-widths, which are only implicitly described in the

current LRM version. This section also includes implementation considerations related to the efficient execution of

the algorithms.

11.4.4 Relational operators
[. . .]

When one or both operands of a relational expression are unsigned, the expression shall be interpreted as a

comparison between unsigned values. If the operands are of unequal bit lengths, the smaller operand shall be

zero-extended to the size of the larger operand.

When both operands are signed, the expression shall be interpreted as a comparison between signed values. If the

operands are of unequal bit lengths, the smaller operand shall be sign-extended to the size of the larger operand. See

11.8.2 for more information.

If either operand is a real operand, then the other operand shall be converted to an equivalent real value and the

expression shall be interpreted as a comparison between real values.

[. . .] [1, §11.4.4, p. 278]

11.4.5 Equality operators
[. . .]

When one or both operands are unsigned, the expression shall be interpreted as a comparison between unsigned

values. If the operands are of unequal bit lengths, the smaller operand shall be zero-extended to the size of the

larger operand.

When both operands are signed, the expression shall be interpreted as a comparison between signed values. If the

operands are of unequal bit lengths, the smaller operand shall be sign-extended to the size of the larger operand. See

11.8.2 for more information.

If either operand is a real operand, then the other operand shall be converted to an equivalent real value, and the

expression shall be interpreted as a comparison between real values.

[. . .] [1, §11.4.5, p. 279]

1

11.4.8 Bitwise operators
[. . .]

For the binary bitwise operators, if one or both operands are unsigned, the result is unsigned. If the operands are

of unequal bit lengths, the smaller operand shall be zero-extended to the size of the larger operand.

If both operands are signed, the result is signed. If the operands are of unequal bit lengths, the smaller operand

shall be sign-extended to the size of the larger operand. See 11.8.2 for more information.

For the unary bitwise negation operator, if the operand is unsigned, the result is unsigned. If the operand is signed,

the result is signed.

[. . .] [1, §11.4.8, p. 281]

11.6.1 Rules for expression bit lengths
The rules governing the expression bit lengths have been formulated so that most practical situations have a natural

solution.

The number of bits of an expression (known as the size of the expression) shall be determined by the operands

involved in the expression and the context in which the expression is given.

A self-determined expression is one where the bit length of the expression is solely determined by the expression

itself—for example, an expression representing a delay value.

A context-determined expression is one where the bit length of the expression is determined by the bit length of the

expression and by the fact that it is part of another expression. For example, the bit size of the right-hand expression

of an assignment depends on itself and the size of the left-hand side.

Table 11-21 shows how the form of an expression shall determine the bit lengths of the results of the expression.

In Table 11-21, i, j, and k represent expressions of an operand, and L(i) represents the bit length of the operand

represented by i.
Table 11-21—Bit lengths resulting from self-determined expressions

Expression Bit length Comments
Unsized constant number At least 32 bits

Sized constant number As given

i op j, where op is:

+, -, *, /, %, &, |, ˆ, ˆ~, ~ˆ
max pLpiq,Lpjqq

op i, where op is:

+, -, ~, ++, --
Lpiq

i op j, where op is:

===, !==, ==?, !=?, ==, !=, >, >=, <, <=
1 bit Operands are sized to

max pLpiq,Lpjqq

i op j, where op is:

&&, ||, ->, <->
1 bit All operands are self-determined

op i, where op is:

&, ~&, |, ~|, ˆ, ~ˆ, ˆ~, !
1 bit All operands are self-determined

i op j, where op is:

>>, <<, **, >>>, <<<
Lpiq j is self-determined

i ? j : k max pLpjq,Lpkqq i is self-determined

{i, ..., j} Lpiq ` ¨ ¨ ¨ ` Lpjq All operands are self-determined

{i {j, ..., k}} i ˆ pLpiq ` ¨ ¨ ¨ ` Lpjqq All operands are self-determined

Multiplication may be performed without losing any overflow bits by assigning the result to something wide enough

to hold it.

[1, §11.6.1, p. 299]

The number of bits of any expression is determined by the operands and the context in which it occurs. Casting can be

used to set the target width of an intermediate value (see 6.24).

Controlling the number of bits that are used in expression evaluations is important if consistent results are to be achieved.

The following typing system provides precise rules for determining expression bit widths in all situations.

The bit width of expressions is defined using the fundamental concepts:

Self-determined width The self-determined width is the intrinsic width of an expression: i.e. it is solely based on the

2

expression’s internal structure and operands.

Resizing Expressions may be resized to bit-widths greater than or equal to their self-determined width. This operation
may change the width of the internal expression.

11.6.2 Example of expression bit-length problem
[. . .] [1, §11.6.2, p. 300]

11.6.3 Expression categories for resizing
SystemVerilog expressions shall be categorized into two types based on their resizing behavior:

11.6.3.1 Atomically resizable expressions
Atomically resizable expressionsmay be resized without affecting their internal operand width. The following expressions

are atomically resizable:

• Operands as defined in 11.2 (nets, variables, literals, function calls, etc.)

• Comparison expressions: ===, !==, ==?, !=?, ==, !=, >, >=, <, <=

• Logical expressions: &&, ||, ->, <->

• Reduction expressions: &, ~&, |, ~|, ˆ, ~ˆ, ˆ~, !

• Assignment expressions: =

• Concatenation expressions: {...}

• Replication expressions: {.{...}}

• Set membership expressions: inside

When an atomically resizable expression is resized to a target width, only the expression’s result shall be extended — its

operands shall remain unmodified.

Rule (Atomic-Resize): If e has a self-determined width of t and n is larger than t and e is atomically resizable, then e
may be resized to n.

11.6.3.2 Non-atomically resizable expressions
Non-atomically resizable expressions propagate resizing to their operands when a target width is specified. These

expressions require their operands to be adjusted to specific widths based on the resizing rules. The following expression

are not atomically resizable:

• Binary and bitwise expression: +, -, *, /, %, &, |, ˆ, ˆ~, ~ˆ

• Unary arithmetic, bitwise, increment and decrement expressions: +, -, ~, ++, --

• Shift and power expression: >>, <<, **, >>>, <<<

• Conditional expression: ?:

Binary arithmetic and bitwise expressions propagate the target width to both operands:

Rule (Binary-Resize): If a may be resized to n and b may be resized to n, then a ‘ b may be resized to n.

Unary arithmetic, unary bitwise negation and unary increment and decrement expressions propagate the target width to

their single operand:

Rule (Unary-Resize): If e may be resized to n, then ‘e may be resized to n.

Shift and power expressions propagate the target width only to the left operand, while the right operand remains

self-determined:

Rule (Shift-Resize): If a may be resized to n and b has a self-determined width of tb, then a ‘ b may be resized to n.

Conditional expressions propagate the target width to both branch expressions, while the condition remains self-
determined:

3

Rule (Conditional-Resize): If c has a self-determined width width of tC and te may be resized to n and fe may be
resized to n, then c ? te : fe may be resized to n.

11.6.4 Self-determined expression sizing rules
The self-determined width of an expression, solely based on its internal structure and operands, shall be computed

according to the following rules:

11.6.4.1 Operands
For operands as defined in 11.2, the self-determined width is always well-defined and determined by their declaration,

literal specification, or result type:

Rule (Operand-Size): If e is an operand and s its width, then e shall have a self-determined width of s.

Examples:

• Sized integer literals: 8'hFF has a self-determined width of 8, 32'd123 has a self-determined width of 32,

• Unsized integer literals: 123, 'hABC have a self-determined width of at least 32 bits,

• Parameters, nets, variables and structure fields have their width defined by their declaration: logic [15:0] data
has a self-determined width of 16,

• Bit-select: data[5] has a self-determined width of 1,

• Part-select: data[7:0] has a self-determined width of 8, data[base +: 4] has a self-determined width of 4,

• Function calls: Have their width defined by their return type — a function returning logic [31:0] has a self-
determined width of 32,

• Variadic sized function calls: For functions whose return type depends on their arguments, the arguments’ widths

shall be determined as if they were in an assignment context. Once all argument widths are determined, the

function’s result type becomes known and defines the self-determined width.

11.6.4.2 Binary arithmetic and bitwise expressions
For binary arithmetic and bitwise expressions, the self-determined width is the maximum of the operand widths. The

smaller operand is resized to match the larger operand’s widths.

Rule (Binary-Left-Width): If a has a self-determined width of t and b may be resized to t, then a ‘ b shall have a
self-determined width of t.

Rule (Binary-Right-Width): If b has a self-determined width of t and a may be resized to t, then a ‘ b shall have a
self-determined width of t.

11.6.4.3 Unary expressions
For unary expressions (Unary arithmetic, unary bitwise negation and unary increment and decrement), the self-determined
width is identical to the operand width.

Rule (Unary-Width): If e has a self-determined width of t, then ‘e shall have a self-determined width of t.

11.6.4.4 Relational and equality expressions
For relational and equality expressions, the self-determined width is always 1 bit. The smaller operand shall be resized to

match the larger operand’s width for comparison purposes.

Rule (Relational-Left-Width): If a has a self-determined width of t and b may be resized to t, then a ‘ b shall have a
self-determined width of 1.

Rule (Relational-Right-Width): If b has a self-determined width of t and a may be resized to t, then a ‘ b shall have a
self-determined width of 1.

4

11.6.4.5 Logical expressions
For binary logical expressions, the self-determined width is always 1 bit. All operands are self-determined.

Rule (Logical-Width): If a has a self-determined width of ta and b has a self-determined width of tb, then a ‘ b shall
have a self-determined width of 1.

11.6.4.6 Reduction expressions
For reduction expressions, including !, the self-determined width is always 1 bit. The operand is self-determined.

Rule (Reduction-Width): If e has a self-determined width of t, then ‘e shall have a self-determined width of 1.

11.6.4.7 Shift and power expressions
For shift and power expressions, the self-determined width is determined by the left operand. The right operand shall be

self-determined.

Rule (Shift-Width): If a has a self-determined width of t and b has a self-determined width of tb, then a ‘ b shall have a
self-determined width of t.

11.6.4.8 Assignment expressions
For assignment expressions, the self-determined width is determined by the left-hand side. When the left-hand side has

a larger width than the right-hand side, the right-hand side shall be resized. Otherwise, the right-hand side shall be

self-determined.

Rule (Assignment-Left-Width): If the left-hand side l has a width of t and e may be resized to t, then l ‘ e shall have
a self-determined width of t.

Rule (Assignment-Right-Width): If the left-hand side l has a width of t, e has a self-determined width of te and t is
smaller than te, then l ‘ e shall have a self-determined width of t.

11.6.4.9 Conditional expressions
For conditional expressions using the ?: operator, the self-determined width is the maximum width of the two branch

expressions. The smaller branch shall be resized to match the larger branch. The condition shall be self-determined.

Rule (Conditional-Left-Width): If c has a self-determined width of tc, a has a self-determined width of t, and b may be
resized to t, then c?a:b shall have a self-determined width of t.

Rule (Conditional-Right-Width): If c has a self-determined width of tc, b has a self-determined width of t, and a may
be resized to t, then c?a:b shall have a self-determined width of t.

11.6.4.10 Concatenation expressions
For concatenation expressions, the self-determined width is the sum of the self-determined widths of all operands.

Rule (Concatenation-Width): If e1 has a self-determined width of t1, . . . , ek has a self-determined width of tk , and t is
the sum of t1, . . . , tk , then {e1, . . . , ek} shall have a self-determined width of t.

11.6.4.11 Replication expressions
The self-determined width of a replication is the self-determined width of the inner concatenation multiplied by the

replication amount.

Rule (Replication-Width): If i is the amount of the replication and ein has a self-determined width of tin, and t is
i ˆ tin, then {i{ein}} shall have a self-determined width of t.

5

11.6.5 Example of self-determined expressions
logic [3:0] a;
logic [5:0] b;
logic [15:0] c;
initial begin

a = 4'hF;
b = 6'hA;
$display("a*b=%h", a*b); // expression size is self-determined
c = {a**b}; // expression a**b is self-determined

// due to concatenation operator {}
$display("a**b=%h", c);
c = a**b; // expression size is determined by c
$display("c=%h", c);

end
Simulator output for this example:

a*b=16 // 'h96 was truncated to 'h16 since expression size is 6
a**b=1 // expression size is 4 bits (size of a)
c=ac61 // expression size is 16 bits (size of c)

[1, §11.6.3, p. 301]

This section illustrates the application of sizing and type-derivation rules as defined in this specification. The examples

are derived from the following declarations:

1 logic [7:0] var8; // 8-bit variable
2 logic [31:0] var32; // 32-bit variable
3 logic [15:0] var16; // 16-bit variable
4 logic cond; // condition signal
5 logic [63:0] result; // 64-bit result variable

11.6.5.1 Basic Expression Sizing
This subsection demonstrates basic operand and binary expression sizing behavior.

Given the above declarations, the expression var8 has self-determined width 8. By application of rule Operand-Width:

• var8 is an operand with width 8, as declared in logic [7:0] var8.

The expression var16[15:8] + 4'b1001 has self-determined width 8. By application of rule Binary-Left-Width:

• var16[15:8] has self-determined width 8 (by Operand-Width, part-select of 8 bits).

• 4'b1001 may be resized to 8 by rule Resize:

– 4'b1001 has self-determined width 4 (by Operand-Width, sized literal).

– 8 is greater than 4.

– 4'b1001 is atomically resizable.

Application of rule Binary-Right-Width to this expression would not succeed, as it would require resizing var16[15:8]
to 4 bits.

The expression var16[5] + 8'hFF has self-determined width 8. By rule Binary-Right-Width:

• 8'hFF has self-determined width 8 (by Operand-Width, sized literal).

• var16[5] may be resized to 8 by rule Resize:

– var16[5] has self-determined width 1 (by Operand-Width, bit-select).

– 8 is greater than 1.

– var16[5] is atomically resizable.

6

11.6.5.2 Relational Expression Example
This subsection illustrates the determination of sizing for relational expressions.

For the expression var16 > 16'd100, the resulting self-determined width is 1. By rule Relational-Left-Width:

• var16 has self-determined width 16 (by Operand-Width, declaration logic [15:0] var16).

• 16'd100 may be resized to 16 (already 16 bits):

– 16'd100 has self-determined width 16 (by Operand-Width, sized literal).

11.6.5.3 Reduction Expression Example
This subsection demonstrates sizing for reduction operations.

For the expression &var16[7:0], the resulting self-determined width is 1. By rule Reduction-Width:

• var16[7:0] has self-determined width 8 (by Operand-Width, part-select of 8 bits).

11.6.5.4 Replication Expression Example
This subsection illustrates the effect of replication on expression width.

For the expression {4{var8}}, the resulting self-determined width is 32. By rule Replication-Width:

• The replication count i is 4.

• var8 has self-determined width 8 (by Operand-Width, declaration logic [7:0] var8).

• The resulting width is 4 ˆ 8 “ 32.

11.6.5.5 Complex Replication with Concatenation
This subsection shows replication applied to a concatenated operand.

For the expression {2{var16[7:0], 4'hF}}, the resulting self-determined width is 24. By rule Replication-Width:

• The replication count i is 2.

• The inner concatenation {var16[7:0], 4'hF} has self-determined width 12 by rule Concatenation-Width:

– var16[7:0] has self-determined width 8 (by Operand-Width, part-select).

– 4'hF has self-determined width 4 (by Operand-Width, sized literal).

– Sum is 8 ` 4 “ 12.

• The resulting width is 2 ˆ 12 “ 24.

11.6.5.6 Assignment with Target Width Extension
This subsection illustrates extension of a right-hand operand to match the assignment target.

For the expression var32 = var16[7:0] + 1, the resulting self-determined width is 32. By rule Assignment-Left-
Width:

• Left-hand side var32 has width 32 (by declaration logic [31:0] var32).

• Right-hand side var16[7:0] + 1 may be resized to 32 by rule Binary-Resize:

– var16[7:0] may be resized to 32 by rule Resize:

∗ var16[7:0] has self-determined width 8 (by Operand-Width, part-select).

∗ 32 is greater than 8.

∗ var16[7:0] is atomically resizable.

– 1 may be resized to 32 (unsized literals have at least 32 bits).

7

11.6.5.7 Assignment with Result Truncation
This subsection shows truncation of the right-hand result to match the left-hand target width.

For the expression var8 = var32 + var16, the resulting self-determined width is 8. By ruleAssignment-Right-Width:

• Left-hand side var8 has width 8 (by declaration logic [7:0] var8).

• Right-hand side var32 + var16 has self-determined width 32 (by Binary-Left-Width):

– var32 has self-determined width 32 (by Operand-Width, declaration logic [31:0] var32).

– var16 may be resized to 32 by rule Resize:

∗ var16 has self-determined width 16 (by Operand-Width, declaration logic [15:0] var16).

∗ 32 is greater than 16.

∗ var16 is atomically resizable.

• 8 is smaller than 32.

11.6.5.8 Conditional Expression with True Branch Determining Size
This subsection demonstrates conditional sizing where the true branch determines the resulting width.

For the expression cond ? var32 : var8, the resulting self-determined width is 32. By rule Conditional-Left-Width:

• Condition cond has self-determined width 1 (by Operand-Width, declaration logic cond).

• True branch var32 has self-determined width 32 (by Operand-Width, declaration logic [31:0] var32).

• False branch var8 may be resized to 32 by rule Resize:

– var8 has self-determined width 8 (by Operand-Width, declaration logic [7:0] var8).

– 32 is greater than 8.

– var8 is atomically resizable.

11.6.5.9 Conditional Expression with False Branch Determining Size
This subsection demonstrates conditional sizing where the false branch determines the resulting width.

For the expression cond ? var8 : var32, the resulting self-determined width is 32. By ruleConditional-Right-Width:

• Condition cond has self-determined width 1 (by Operand-Width, declaration logic cond).

• False branch var32 has self-determined width 32 (by Operand-Width, declaration logic [31:0] var32).

• True branch var8 may be resized to 32 by rule Resize:

– var8 has self-determined width 8 (by Operand-Width, declaration logic [7:0] var8).

– 32 is greater than 8.

– var8 is atomically resizable.

11.6.5.10 Conditional Expression with Context-Driven Sizing
This subsection demonstrates conditional sizing determined by the context of an assignment target.

For the expression result = cond ? var32[7:0] : var32[15:8], the resulting self-determined width is 64. By rule

Assignment-Left-Width:

• Left-hand side result has width 64 (by declaration logic [63:0] result).

• Right-hand side cond ? var32[7:0] : var32[15:8] may be resized to 64 by rule Conditional-Resize:

– Condition cond has self-determined width 1 (by Operand-Width, declaration logic cond).

– True branch var32[7:0] may be resized to 64 by Resize:

∗ var32[7:0] has self-determined width 8 (by Operand-Width, part-select).

∗ 64 is greater than 8.

8

∗ var32[7:0] is atomically resizable.

– False branch var32[15:8] may be resized to 64 by Resize:

∗ var32[15:8] has self-determined width 8 (by Operand-Width, part-select).

∗ 64 is greater than 8.

∗ var32[15:8] is atomically resizable.

11.7 Signed expressions
[. . .] [1, §11.7, p. 301]

11.8.2 Steps for evaluating an expression
The following are the steps for evaluating an expression:

• Determine the expression size based upon the standard rules of expression size determination (see 11.6).

• Determine the sign of the expression using the rules outlined in 11.8.1.

• Propagate the type and size of the expression (or self-determined subexpression) back down to the context-

determined operands of the expression. In general, any context-determined operand of an operator shall be

the same type and size as the result of the operator. However, there are two exceptions:

– If the result type of the operator is real and if it has a context-determined operand that is not real, that

operand shall be treated as if it were self-determined and then converted to real just before the operator

is applied.

– The relational and equality operators have operands that are neither fully self-determined nor fully

context-determined. The operands shall affect each other as if they were context-determined operands

with a result type and size (maximum of the two operand sizes) determined from them. However, the

actual result type shall always be 1 bit unsigned. The type and size of the operand shall be independent

of the rest of the expression and vice versa.

• When propagation reaches a simple operand as defined in 11.5, then that operand shall be converted to the

propagated type and size. If the operand shall be extended, then it shall be sign-extended only if the propagated

type is signed.

[1, §11.8.2, p. 302]

11.8.3 Steps for evaluating an assignment
The following are the steps for evaluating an assignment:

• Determine the size of the right-hand side by the standard assignment size determination rules (see 11.6).

• If needed, extend the size of the right-hand side, performing sign extension if, and only if, the type of the

right-hand side is signed.

[1, §11.8.3, p. 303]

11.8.4 Handling x and z in signed expressions
[. . .] [1, §11.8.4, p. 303]

A Technical Appendix: Algorithm Overview
This appendix presents an algorithm to compute the width of all sub-expressions of a SystemVerilog expression. The

algorithm operates in two phases:

First, the self-determined width of the expression is computed using the algorithm 1. This algorithm traverses the

expression tree bottom-up to determine the natural width of each expression based solely on its internal structure and

operands.

Second, the expression and all its sub-expressions are resized to the target width using the algorithm 2. During this

9

propagation phase, all self-determined sub-expressions are resized to their self-determined width, while the other sub-
expressions inherit their width from the surrounding context.

Assuming that call to the Determine function are cached, the algorithm runs in linear time with respect to the number

of operations in the SystemVerilog expression. The reasoning implemented in this algorithm follows the typing rules

explained in the previous section 11.6.1.

Algorithm 1: Determine

Input: A SystemVerilog expression expr
Output: The self-determined width of expr

1 switch expr do
2 when expr is an operand do
3 return Γ pexprq

4 when expr is lhs ‘ rhs do // ‘ can be +, -, *, /, %, &, |, ˆ, ˆ~, ~ˆ
5 lhsw Ð determineplhsq
6 rhsw Ð determineprhsq
7 return max

`

lhsw, rhsw
˘

8 when expr is ‘arg do // ‘ can be +, -, ~, ++, --
9 argw Ð determinepargq

10 return argw
11 when expr is lhs ‘ rhs do // ‘ can be ===, !==, ==?, !=?, ==, !=, >, >=, <, <=
12 return 1

13 when expr is lhs ‘ rhs do // ‘ can be &&, ||, ->, <->
14 return 1

15 when expr is ‘arg do // ‘ can be &, ~&, |, ~|, ˆ, ~ˆ, ˆ~, !
16 return 1

17 when expr is lhs ‘ rhs do // ‘ can be >>, <<, **, >>>, <<<
18 lhsw Ð determineplhsq
19 return lhsw
20 when expr is lval = rhs do
21 lvalw Ð ϕplvalq
22 return lvalw
23 when expr is cond ? lhs : rhs do
24 lhsw Ð determineplhsq
25 rhsw Ð determineprhsq
26 return max plhsw, rhswq

27 when expr is {expr1, ... , exprN} do
28 for i P t1, . . . , Nu do
29 widthi Ð determinepexpriq

30 return
řN

i“0 widthi
31 when expr is {n arg} do
32 argw Ð determinepargq

33 return n ˆ argw

References
[1] IEEE: IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and Verification Language. IEEE Std

1800-2023 (Revision of IEEE Std 1800-2017) (Feb 2024). https://doi.org/10.1109/IEEESTD.2024.10458102

10

Algorithm 2: Propagate
Input: A SystemVerilog expression expr, A targetWidth to resize expr to.
Result: All sub-expressions of expr are annotated with their final width

1 switch expr do
2 when expr is an operand do
3 Annotate expr with targetWidth

4 when expr is lhs ‘ rhs do // ‘ can be +, -, *, /, %, &, |, ˆ, ˆ~, ~ˆ
5 propagate(lhs, targetWidth)
6 propagate(rhs, targetWidth)
7 Annotate expr with targetWidth

8 when expr is ‘arg do // ‘ can be +, -, ~, ++, --
9 propagate(arg, targetWidth)

10 Annotate expr with targetWidth

11 when expr is lhs ‘ rhs do // ‘ can be ===, !==, ==?, !=?, ==, !=, >, >=, <, <=
12 argw Ð max pdetermineplhsq,determineprhsqq

13 propagate(lhs, argw)
14 propagate(rhs, argw)
15 Annotate expr with targetWidth

16 when expr is lhs ‘ rhs do // ‘ can be &&, ||, ->, <->
17 propagate(lhs, determine(lhs))
18 propagate(rhs, determine(rhs))
19 Annotate expr with targetWidth

20 when expr is ‘arg do // ‘ can be &, ~&, |, ~|, ˆ, ~ˆ, ˆ~, !
21 propagate(arg, determine(arg))
22 Annotate expr with targetWidth

23 when expr is lhs ‘ rhs do // ‘ can be >>, <<, **, >>>, <<<
24 propagate(lhs, targetWidth)
25 propagate(rhs, determine(rhs))
26 Annotate expr with targetWidth

27 when expr is lval = rhs do
28 propagate(rhs, max pϕplvalq,determineprhsqq)

29 Annotate expr with targetWidth

30 when expr is cond ? lhs : rhs do
31 propagate(cond, determine(cond))
32 propagate(lhs, targetWidth)
33 propagate(rhs, targetWidth)
34 Annotate expr with targetWidth

35 when expr is {expr1, ... , exprN} do
36 for i P t1, . . . , Nu do
37 propagate(expri, determine(expri))

38 Annotate expr with targetWidth

39 when expr is {n arg} do
40 propagate(arg, determine(arg))
41 Annotate expr with targetWidth

11

	Relational operators
	Equality operators
	Bitwise operators
	Rules for expression bit lengths
	Example of expression bit-length problem
	Expression categories for resizing
	Atomically resizable expressions
	Non-atomically resizable expressions

	Self-determined expression sizing rules
	Operands
	Binary arithmetic and bitwise expressions
	Unary expressions
	Relational and equality expressions
	Logical expressions
	Reduction expressions
	Shift and power expressions
	Assignment expressions
	Conditional expressions
	Concatenation expressions
	Replication expressions

	Example of self-determined expressions
	Basic Expression Sizing
	Relational Expression Example
	Reduction Expression Example
	Replication Expression Example
	Complex Replication with Concatenation
	Assignment with Target Width Extension
	Assignment with Result Truncation
	Conditional Expression with True Branch Determining Size
	Conditional Expression with False Branch Determining Size
	Conditional Expression with Context-Driven Sizing

	Signed expressions
	Steps for evaluating an expression
	Steps for evaluating an assignment
	Handling x and z in signed expressions
	Technical Appendix: Algorithm Overview

